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Abstract—The six-day Remote Agent Experiment
(RAX) on the Deep Space 1 mission will be the first
time that an artificially intelligent agent (the Remote
Agent) will control a NASA spacecraft. Successful
completion of this experiment will open the way for
AI-based autonomy technology on future missions. An
important validation objective for RAX is
implementation of a credible validation and
verification strategy that will “scale up” to missions
that make full use of spacecraft autonomy. One of the
key components of the Remote Agent is an onboard
planner and scheduler. Verifying autonomous planners
raises several challenges. This paper describes those
challenges and the verification methods we found
effective.

1. INTRODUCTION

The Deep Space One (DS1) spacecraft, which launched
October 24, 1998, is a technology validation mission.
Unlike previous missions its primary objective is not to
gather science observations, but to flight validate
several new technologies. Successful validation of
these technologies will remove a major obstacle to their
use on more risk-averse science missions.

One of the new technologies is the Remote Agent
(RA), an artificial-intelligence based architecture
capable of autonomously commanding the spacecraft.
The Remote Agent Experiment (RAX) will
demonstrate autonomous operations of the DS1
spacecraft by the RA for a period of six days in the
Spring of 1999. Successful flight validation of the RA
will open the door to the use of autonomous spacecraft
commanding technology on future science missions. A
excellent description of the experiment design and
validation objectives can be found in [1].

The Remote Agent (RA) consists of three components:
an onboard planner, a smart-executive, and a mode
identification and recovery engine (MIR). The onboard
planner expands high-level goals, provided by the
ground operators and onboard agents, into a plan that
achieves the goals while obeying various safety,
resource, and operational constraints. The smart
executive carries out the plans while MIR looks for
faults. If a fault occurs, the executive tries to recover
within the constraints of the plan; otherwise it puts the
spacecraft into a known safe state (possibly degraded)
and requests a new plan that achieves the remaining
goals from that state.

One of the Remote Agent’s validation objectives is
demonstrating a credible verification and validation
(V&V) approach that will “scale up” from the
experiment scope to missions that make full use of
autonomy. Autonomous systems raise several
verification challenges not faced by traditional flight
software. This paper focuses on the challenges raised
by the onboard planner and on the verification methods
that we found effective.

The onboard planner must be able to generate a valid
plan given a set of goals and an initial state. There are
far too many combinations to test exhaustively. The
challenge is to find a set of input test cases that is small
enough to test and analyze tractably, yet still provides a
high degree of confidence in the planner. This
challenge was compounded for RAX by limited testing
resources, both in terms of workforce and testbed
availability.

We have taken a three-pronged approach to planner
verification. First, we used a parameter-based approach
to identify a test suite with reasonable coverage of the
input space. The inputs are mapped onto independent
parameters, and then the planning constraints are used
to identify non-interacting or low-interaction regions of
that space. This greatly reduces the number of
parameter combinations that must be tested.
Orthogonal arrays were used to design minimal-sized
test suites with comprehensive coverage of the
necessary parameter combinations.

Second, we developed a automated plan verification
tool to increase the number of test cases that we can
feasibly analyze.

Finally, we exploited the availability of lower-fidelity
test beds to reduce the number of tests that must be run
on the oversubscribed high-fidelity testbed. The
planner is composed of mission- and platform-
independent reasoning engines, and mission-dependent
models. Almost all of the reasoning requirements can
be verified on lower fidelity platforms. The high-
fidelity platforms test the remaining performance and
operating environment requirements.

The remainder of this paper is organized as follows.
Sections 2 describes the Planner and Remote Agent
Architecture in more detail. Section 3 describes the
test-case selection methods. Section 4 discusses the
automated verification tools and specification
formalisms that we found effective. Section 5 describes
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the testbed allocation approach and lessons for larger-
scale testing efforts.

2. REMOTE AGENT ARCHITECTURE

The Remote Agent [2] consists of three components:
Executive (EXEC), Planner/Scheduler (PS), and Mode
Identification and Reconfiguration (MIR). The planner
is given a set of high-level goals from the ground
operations team and from the onboard navigation
system. PS generates a plan that achieves the goals
while obeying safety constraints and resource
constraints. The plan is carried out by the smart

executive. Faults are detected by the MIR engine. If the
smart executive cannot resolve the fault within the
constraints of the plan, it puts the spacecraft into a
known (and possibly degraded) safe state and requests
a new plan that achieves the remaining goals from that
state.

The fundamental execution units in the plan are tokens
and timelines. Each activity in a plan is defined by a
token, though not every token is an executable activity.
 Tokens also track spacecraft states and resources. A
timeline is a sequence of tokens that specifies the
evolution of that state variable over time. The plan has
several parallel timelines. The plan specifies start and
end time windows for each token, and temporal
constraints among the tokens (before, after, contains,
etc).

The Remote Agent architecture is shown in Figure 2.

3. TEST CASE SELECTION AND COVERAGE

The effectiveness of scenario-based testing depends
largely on how well the scenarios cover the
requirements. Good coverage requires not only that the
test suite exercise each requirement, but that the test-
suite provide high confidence that if the requirement is
satisfied on the test suite that the requirement will also
be satisfied on all of the untested inputs.

In addition to providing good coverage, the test-suite
must have a manageable number of tests. Finding the

right balance between coverage and test-suite size can
be difficult, and may involve trading risk (coverage)
for manageability. The manageability of a test-suite
depends on the availability of appropriate test-beds, the
running time of the suite, and the analysis effort it
entails.

The module test-suites were designed using a
parameter-based approach. The universe of possible
input scenarios is characterized by a multi-dimensional
parameter space. A given assignment of values to
parameters specifies a unique scenario. The test suite
consists of a subset of the possible parameter values.
Three methods were used to achieve good coverage and
manageability: abstracting the parameter space to focus
on the relevant parameters and values, analyzing the
planner models to identify independent regions of the
parameter space and thereby reduce the number of
parameter combinations that must be tested, and using
orthogonal arrays to generate minimal-size test suites
that cover those combinations.

Planner Test Case Selection

The planner takes as input a requested plan start time,
an initial spacecraft state, a set of goals (some of which
come from the onboard navigator), and a set of
constraints. It generates a plan that begins at the
requested start time and achieves the goals from the
initial state while obeying the constraints. The
constraints are specified in the plan model and are
largely fixed. However, a few of them can be modified
by changing parameter settings, and fewer still are
defined as external functions provided by onboard
systems. (Specifically, the duration and legality of
spacecraft slews (turns) are defined as functions
provided by the attitude control subsystem.) The
constraint parameters and the behavior of the ACS
function must both be treated as inputs.

The planner’s behavior is strictly a function of its
inputs. Its behavior does not depend on the order or
timing of events that occur while it is planning1. This
makes it a good candidate for parameter-based testing
(e.g., [4]). The input space is characterized by a multi-
dimensional parameter space. Each assignment of
values to parameters identifies a single point in the
input space. The planner is tested on a carefully chosen
subset of parameter values, and the resulting plan is
checked against a list of plan correctness requirements
as discussed in Section 4.

The test-suite must have good coverage, as defined by
some metric, but not be too large to run and analyze.
Based on our experience a suite of 200 to 300 plan-
request scenarios is about the upper limit for a one-
person testing effort, assuming an automated scenario-
runner and adequate plan analysis tools.

                                                       
1
 The onboard goals and ACS constraint functions are invoked during

planning, but they always give the same results for the same inputs
regardless of when they are called or in what order.
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Figure 1: Remote Agent Architecture
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A combination of approaches has proven effective for
generating test-suites for the RAX planner. First, the
parameter space is reduced by identifying equivalence
classes of parameters and parameter values. The
planner behavior is not expected to change
qualitatively on inputs drawn from the same
equivalence class, but is expected to change for inputs
in different classes. Next, regions of high and low
interaction in the reduced parameter space are
identified by analyzing the planner model. Parameters
from strongly interacting regions should be tested in
combination, while fewer combinations must be tested
from weakly interacting regions. Parameters from non-
interacting regions can be tested independently.
Finally, an orthogonal array-based algorithm generates
a small (nearly minimal) size test-suite with
comprehensive coverage of the identified parameter
combinations.

Parameter Space Construction—The input space is
characterized by a multi-dimensional parameter space
such that there is a one-to-one correspondence between
parameter settings and inputs. We term this the “true”
parameter space. This space is infinite, and clearly
infeasible for testing.

To produce a manageable number of test cases, it is
first necessary to control the size of the parameter
space. This was done by selecting parameters and
parameter values that focus on aspects of the input
space to which the planner is expected to be sensitive.
We term this the “abstract” parameter space. Each
parameter setting in this space specifies an equivalence
class of inputs rather than a single input. The planner
is expected to behave similarly on every input in a
given class, but to have qualitatively different behavior
for inputs drawn from different classes. Abstraction
entails some risk, since there is no guarantee that the
parameter space actually has these properties, but this
risk is needed to construct a manageable test-suite.

Real or integer-valued parameters from the true space,
and those with large numbers of values, were
abstracted by selecting a small handful of discrete
values to test. Where it was known which values were
at boundaries of qualitative behavior regions of the
planner, those boundary values were selected. In the
other cases values were selected from the parameter’s
domain according to their expected distribution in
operations. No attempt was made to select a
statistically significant number of values. The
abstraction makes several educated guesses, such as the
qualitative behavior boundaries, the distribution of
values in operations, and the number of parameter
values to select.

The primary abstractions are as follows. The initial
states are restricted to twelve canonical states that
cover all of the qualitatively different initial states [all
combinations of MICAS state (2), MICAS health (2),
and final attitude (3)]. The planner is either insensitive
to other variations, or those variations are not initial
states that the exec would ever generate. The plan start

time is restricted to ten boundary points: before,
during, and after plan horizon boundaries; and before,
during, and after op-nav windows.

Several parameters are set to fixed values. Most of
these are design-time parameters that might change
during testing and integration, but will not change
during the experiment itself. The suite will be re-run if
those parameters change. The remaining parameters
control values that the planner does not reason about,
but simply “passes through” to the executive.  Testing
a single arbitrary value is sufficient.

Scaling Up—There are a number of aspects to the
planner and RA design that reduce the size of the
parameter space, and thereby facilitate testing. It will
be important to pay attention to these design decisions
for future missions.

There are a vast number of possible initial states, but
only ten or so that will occur in practice. By design, the
RA reduces variability in the initial state for planning.
The Executive places the spacecraft in a predefined
state after any error that requires replanning. In
nominal operations, the initial state for a given plan is
the end-state of the previous plan. This allows
execution to continue seamlessly from plan to plan.
The planner model is designed so that every plan ends
in a relatively quiescent state similar to the standby
state. There are only a small number of qualitatively
different end-states.

A full-scale science mission will have a few more
standby states and end-states, but not many more. The
number will be proportional to the product of the
health-states tracked by the planner. If the planner
covered the entire DS1 mission, it would track only
three more health timelines: IPS health, MICAS high-
voltage switch health, and RCS thruster health for a
total of 32 initial states.

Test Suite Construction—The test suite must provide
adequate coverage, according to some metric, yet have
a manageable number of cases. We use a combination
of two approaches. First, we use orthogonal arrays [4]
to generate a minimal-sized test-suite in which every
parameter value and every pair of values appears in at
least one test case, and every parameter value appears
in about the same number of cases. 

This approach detects every bug caused by a single
parameter value or by an interaction of two parameter
values. It will detect only some bugs caused by
interactions of three or more parameter values. The
risk of this approach is that it assumes that the majority
of bugs are due to one or two parameter values.

The PS test-suite was constructed using an orthogonal
arrays approach. The RAX test-suite contains three
sub-suites generated with orthogonal arrays: one for
the twelve-hour experiment, and one each for the six
day replan cases and the six-day back-to-back plans.
The twelve-hour suite has 24 test cases (many of the
above parameters are fixed for the twelve-hour
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experiment), and the other suites have about fifty cases
each.

Coverage Metrics—Constructing this test suite
required several assumptions and abstractions, and
each of these introduces some uncertainty in the
coverage. In order to assess this risk, we developed
several orthogonal coverage metrics with which to
evaluate the test suite and its assumptions.

One metric is whether there is at least one test case
from each set of inputs for which the planner behavior
is expected to be qualitatively different. Whether the
planner behaves qualitatively similarly or differently to
a set of inputs depends on the constraints in the
planner model. If the inputs differ on plan elements
that are interact strongly (have many constraints
among them), then the planner behavior is likely to
differ dramatically. If the inputs differ on weakly
interacting plan elements, then the output plans are
likely to be similar. With this metric, one identifies all
the strongly interacting plan elements and the
combinations of “true” parameter values that control
these elements. The abstract parameter space should
not have settings that correspond to these
combinations. If it does, then settings in the abstract
space do not correspond to equivalence classes where
the behavior is qualitatively similar.

The test-suite coverage is measured with respect to this
metric by identifying the combinations of abstract
parameter values that control the strongly interacting
regions. The test-suite should have at least one test
case for each combination. The orthogonal array
algorithm can be extended to include these test cases
(e.g., [5]), or they can simply be appended to the test-
suite with no attempt to minimize.

We performed a very rough interaction analysis to
identify the most heavily interacting goals, initial
states, and constraint parameters. The test suite
contains at least a few test cases from each of these

interaction regions. Additional work is needed to
implement the interaction analysis metric.

A second metric is how well the test suite exercises all
of the requirements. If a requirement is trivially
satisfied for some test-case, then that case does not
exercise the requirement. A third related metric is how
well the test-suite exercises all of the knowledge in the
plan model. The plan model consists of constraints of
the form “if token A appears in the plan, then token B
must also appear in the plan and be in the following
temporal relation to A.” Token A is called the master
token, and B is called the target token. The constraint
is exercised if and only if the master token appears in
the plan. It is therefore easy to determine which
constraints were exercised by examining the tokens in
the resulting plan. As an additional check, the plan
maintains temporal relations, which makes it possible
to tell whether a master/target pair occurred by
accident or as a result of exercising a constraint in the
model.  The coverage of the test-suite is proportional to
the percentage of the total constraints exercised.

It is difficult to predict which inputs will exercise a
given constraint or requirement, though one can often
make a good guess. For the RAX planner, we use these
two coverage metrics to measure the coverage of the
suite after running it, and then add test-cases if needed.
The third metric is analogous to code-covering metrics
which are also used for post-hoc coverage analysis.

Single Variation Test Suites—The orthogonal array-
generated test suite provides excellent coverage with a
handful of test cases. However, it is difficult to identify
which parameter caused a problem and file a
meaningful bug report. To address this problem, we
constructed a second suite of test-cases in which each
case is identical to a baseline scenario in every
parameter value but one. Since the planner is known to
perform correctly on the baseline case, any problems
are very likely to be caused by the one parameter that
changed.

Table 1.  DS1 Test-beds

Platform Fidelity CPU Hardware Availabilit
y

CPU  speed

Spacecraft Highest Flight Flight 1 for DS1 1:1

DS1 Testbed High Flight Flight spares + DS1 simulators 1 for DS1 1:1

Hotbench High Flight Flight spares + DS1 simulators 1 for DS1 1:1

Papabed Med Rad6k DS1 simulators only 1 for DS1 4:1

Radbed Low Rad6k RAX simulators only 1 for RAX 4:1

PowerPC Lowest PPC RAX simulators only 2 for RAX 10:1

Unix Minimal Sparc Ultra RAX simulators only unlimited 40:1

• The flight CPU is a radiation hardened RS-6000 chip (Rad6k) running on the flight bus, memory, etc.
• The Papabed and Radbed run on a Rad6k chip bus, but have some non-flight bus and memory components.
• The PowerPC (PPC) is a non-hardened, off-the-shelf RS-6000 chip with higher clock speed than the Rad6k.
• The RAX simulators were written by the RAX team and are of lower fidelity than the DS1 simulators
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In practice, these “single variation” cases catch most of
the initial bugs. The orthogonal-array suites are useful
for identifying additional bugs once the single
variation cases all pass.

4. ALLOCATING TESTS TO TEST BEDS

The DS1 flight project has a number of test beds
ranging in fidelity (with respect to the spacecraft) and
scarcity, as shown in Table 1. The highest fidelity
platforms, such as the spacecraft itself, are scarce and
testing time on them is limited. CPU speed decreases
with increasing fidelity,2 further limiting the effective
testing time. Lower fidelity platforms are more
numerous and have faster CPUs, but tests performed on
them must be combined with a strong argument that
additional fidelity will not change the outcome.

Exploiting speed and availability is crucial for the
large planner test suites. In order to obtain adequate
coverage, the test suite must have about 200 plan
generation cases. Plans take four hours to generate on
flight CPUs, but less than five minutes to generate on a
Sparc Ultra/1 which means it would take over a month
to run through the entire suite on a high-fidelity test-
bed, but only sixteen hours on Unix.

High fidelity test beds are also the most difficult to
configure and instrument for a given test, whereas
lower fidelity test-beds are generally the easiest. This
means that some tests can only be performed on lower
fidelity test beds.

The planner is well suited to exploit low-fidelity
testbeds. The planner consists of a domain-independent
reasoning engine, a domain-specific model, and a
handful of implementation-specific interfaces with the
flight software. The only planner input that changes on
higher fidelity test-beds is the exact content of the
goals provided by on-board systems such as NAV and
ACS. This means that modulo timing and performance
issues, the planner behavior is expected to behave
identically on Unix and the spacecraft for any given
input. This permits comprehensive planner testing on
Unix platforms with full expectation that the results
will scale up to other platforms. A handful of tests are
repeated on higher fidelity platforms to address
performance issues and to be sure that the plans are
identical (i.e., no anomalies are introduced by
platform-dependent implementation differences, the
CPU, or because we are using a RAMdisk instead of an
NFS file system).

5. PLANNER VERIFICATION TOOL

The planner generates a plan from an initial spacecraft
state, a set of goals, and constraints. The main
requirement on the planner is that the plan meet a long
list of correctness requirements. Plans can be several

                                                       
2
 Flight processors are typically one or two generations behind the state-

of-the-art due to the need for radiation hardening and the need to select a
CPU at the beginning of the project (at least two years before launch).

hundred kilobytes long, and are not human-readable.
There are about two hundred plans in the test-suite,
and the entire suite must be analyzed once a month.
There is clearly a need for automated plan verification
tools.

We have such a tools for the DS1 planner. It reads the
plan into an assertions database and then verify that
the assertions satisfy constraints expressed in first
order predicate logic (FOPL). This tool was
implemented in AP5 [3], a language that supports
these kinds of FOPL operations.

The plan correctness requirements are FOPL
statements that specify constraints that must hold
among plan elements. For example, one constraint is
that the plan must not contain OP_NAV_WINDOW
tokens if the MICAS camera switch is stuck in the off
position (as specified by the MICAS_HEALTH token).
This is encoded as the FOPL statement “for all opnav
window tokens w there exists a MICAS_HEALTH
token h such that h contains w.”

Some of these constraints correspond directly to
compatibilities in the planner model. Other constraints
do not map to a single compatibility, but are satisfied
by some collection of compatibilities.

The tool is first used to verify that the plans in the test
suite satisfy the plan model constraints. This gives us
high confidence that the planner model correctly
enforces the constraints for all plans. It is much easier
to verify that a given plan satisfies a constraint than it
is to write compatibilities that enforce the constraint
for all plans. The second use is to verify requirements
that do not correspond to a single compatibility in the
model. These requirements are specified in FOPL.

This tool verifies plans as follows. Roughly speaking,
compatibilities are of the form “if token A exists in the
plan, then there also exists a token B such that the
temporal relation R holds between A and B.” A plan
satisfies a compatibility if for every token of type A
there exists a token of type B in the specified temporal
relation, and the relation is specified explicitly in the
plan.

The verification tools provide high confidence that the
planner generates plans that satisfy the correctness
conditions. It is also necessary to validate the
correctness conditions themselves. A minimal
approach is to have appropriate system engineers
review the conditions. We took this approach for RAX.
A more systematic approach would be to augment the
review process with formal design-validation methods
such as SPIN [6] to ensure that the correctness
conditions guarantee a small handful of high-level
safety and “liveness” conditions.

6. STATUS OF RAX TESTING

As of October 1998, we have performed the low-
fidelity test suites on four RAX releases. Between
December and March we will perform the system test
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suite on the high-fidelity test beds. We have been able
to achieve this testing effort with a four-person testing
team working approximately half-time.

7. CONCLUSIONS

Verifying and validating autonomous systems raises a
number of issues not faced by traditional flight
software.  Traditional flight software (FSW) can focus
testing efforts on the small handful of known execution
paths, whereas  autonomous software must provide
high confidence that it will behave correctly in all
situations. To provide this confidence, the test suite
must have adequate coverage of the requirements and
input space. Some of the standard coverage metrics and
test-suite construction methods are applicable to the
RA, but in some cases new metrics and methods were
needed. We identified a number of these that we found
useful for testing RAX.

Test suites with good coverage also have a relatively
large number of test cases, at least with respect to
traditional FSW. Since high-fidelity test beds are
scarce on flight projects, it was necessary to distribute
the tests among high and low fidelity platforms.
Several aspects of the Remote Agent architecture made
this feasible. We expect that future missions can use a
similar approach.

The complexity of autonomous systems makes it is
difficult to specify and verify the expected behavior.
We identified a number of  methods for specifying the
expected behavior, and developed tools for
automatically verifying the observed behavior against
those specifications.

A full-scale testing effort should also include formal
validation methods to provide even higher confidence
in the RA. We identified a few such methods and
performed proof-of-concept demonstrations.
Expanding upon these methods is an area for future
work.

Overall, the RAX testing effort has identified several
issues that arise when testing autonomous spacecraft
commanding systems, and demonstrates a credible
verification and validation approach that will scale up
beyond the scope of the Remote Agent Experiment.
Successful validation of the RAX will open the door to
use of this exciting technology on future science
missions, and perhaps encourage the development of
new mission classes that are only possible with
autonomous spacecraft.
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